ZH, PRIKL, MEKH, I TEKHN, FIZ, JULY-SEPTEMBER 1965

THE INFLUENCE OF VISCOSITY ANISOTROPY ON THE PLANE-PARALLEL
FLOW OF AN IONIZED MEDIUM IN A COPLANAR MAGNETIC FIELD

E. G. Sakhnovskii

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 11-18, 1965

The author investigates the influence of anisotropy of the viscosity
coefficients on the motion of an ionized medium between parallel
plates with a magnetic field having components in the flow plane
only. It is assumed that the compressibility of the medium may
be neglected, as well as the temperature dependence of the transport
.coefficients, also that the degree of ionization may be regarded as
constant, It is shown that taking Larmor rotation of the ions into ac-
count leads to a considerable complication of the flow pattem, as
distinct from the case when the ions do not possess spiral paths, and
the coplanar magnetic field exerts no influence on the motion of the
medium. In particular, the viscous force introduces a transverse ve-
locity component.

1. Statement of the problem. The motionof an in-
compressible medium which is a mixture of electron,
ion, and neutral gases with a constant degree of ioni-
zation may be described by the following system of
equations, derived in 1, 2]:

p[%‘% +(uv)u]=—vp~divn+ij, diva=0,

. oo (s Zs
§+ S (X8 — g vp) +

-+ 2(1“.?)2%]’;2’)_9'“’[Bx(j><3) +

+ oty vp X B— L (sdiv—divay)xB| =

- Ly 15
= 5o (E +-uxB),
rolE=— 2, rot—fo— =j, divegE=p, divB=0
(To7 = To 7 o Tog ™) (1 -1)

Here u is the velocity, p the pressure, p the den~
sity, s the degree of ionization of the medium; nand
m; are the viscous stress tensors of the mixture as
a whole, and of its ionic component, expressions for
which were obtained in {1]; B is the magnetic induc-
tion vector, E is the electric field strength vector,
j is the current density vector, p¢ is the volume
charge, p, and € are the magnetic and electric con-
stants, w, and w; are the cyclotron frequencies of
the electrons and ions, ¢y =const is the conductivi-
ty of the medium without magnetic field, 1&1ﬁis
the effective collision frequency of particles of
types o~ and B-(a, B = e, i, a electron, ion, and
neutral, respectively), and Z is the charge number.

We shall consider a channel formed by two in-
finite plates arranged in planes z = +4, in which

the motion of the ionized medium is induced either
by a pressure differential in the direction of the

x axis, or by the motion of the upper plate in the
same direction (Couette flow). We shall assume that
the electromagnetic field and the velocity depend on
the transverse coordinate and time only d/dx =
=d/dy = 0. Then from the hydrodynamic equation of
continuity and the fact that the gas cannot penetrate
the walls of the channel, we obtain u, =0. From Max-
well's first equation and the boundary condition im~
plying the absence of a normal component of the
magnetic induction vector we have B, =0. Finally,
from Maxwell's second equation* we have j z =0. We
write the remaining components of equations (1.1) on
the coordinate axes in dimensionless form, and to do
this we introduce, from considerations of the physics
of the problem, the quantities

z,u,t, Py=—0p |0z, B, Ey, Ey, E., j,0p/0z, p,
as characteristic dimensions for

a, Uy, a[ Uy, pU [ a, By, Eqy, Ug By, 6oEo, GoEoBy, 8sBoU, [ a.

Then, writing down the components of the viscous
stress tensor with the help of the formulas of [1], we
obtain for the components of the equation of motion

Buy 4 0 B2t mBe? duy  ByB,(m—ny du, - D
ot R 0z B 0z Bx az | T

By 4 4 0 [BuBy(m—p) Ou _mBAFwB 0w
at R a9z B2 dz B2 9z -

op 14 i[£<B aux__B au")}—l—fxBu“"‘f«’/Bx

oz GM? 8z | B \"V "3z %5z
(B2~B2+B2 R~_M Mz_.Bzaz_G"_
= Dy yo - 'n“)) ’ = Ly T](O) s
E, n(K) .
C=78 W= @ k=12, 3) (1.2)

The dimensionless pressure differential P, may
depend on time only in the general case; in addition,
it is assumed for simplicity that 6p/6y = 0. The
formulas for 7, —the reduced coefficients for the
viscosity of a partially ionized gas in a strong mag-
netic field (1], relative to the viscosity coefficient
7(0) = const of gas dynamics(B = 0)— have the form

*In [5)it is assumed that j, = const = 0, which
contradicts the supposition that the magnetic field
depends only on the transverse coordinate.
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h(B)=1.(2B) = T Szl 0 BT T waggn
ZeB,
((’)iTi:TiDTiv e =10/, (1.3)

where the dimensionless parameter w; 7; charac-
terizes the anisotropy of the viscosity coefficients
(mi is the mass, Ze is the ionic charge; 7 is as-
sociated with the time between all possible ion col-
lisions®. The dependence of the reduced viscosity
coefficient for "isolated" neutrals &5 on the degree
of ionization for Z = 1 may be represented by the
approximate formula

(—9s)(s+By

fa ™ TA—5)FBA+F D sA LB FOI

(8 ~ 1072 —1079) (1.4)

in accordance withthe estimates of [6].

We see from (1.3) and (1.4) that for both s =0
(ordinary hydrodynamics) and for w; iTi < 1 (absence
of Larmor gyration of ions) we haveny; =m, = 1, ny = 0,
and the first two equations of system (1.2) assume
the form

on 1 twy LT g 1)

at R 822 % ot R 022

Because of the homogeneity of the initial and
boundary conditions for u both for Couette flow Py
= 0and in flow with a given pressure gradient we
obtain u_ =0. Thus, the presence of a coplanar
magnetic field with s # 0 leads only to the appear-
ance of a gradient dp/dz, balancing the pondermotive
force. Taking account of the anisotropy of the vis-
cosity coefficients introduces an additional contri-
bution to the gradient mentioned as a consequence
of the appearance of a transverse viscous force, and
also gives rise to a motion of the medium in a di-
rection orthogonal to the applied external force.

The current density components j_and j, are de-
termined from the components of the generalized
Ohm's law on the x and y axes

, 1
== 1773 {1 — 3)% 04T;,0¢ToB? X

Z 4
X B — g Part 21— P otiannte | BAE, +

+BBE, + iz (B — SR Bap,) —
T d —l:;IGMﬁ _(%(Sﬂs;ﬂs (B gu‘ — 5 %L:x m}

, 1
Jv=1 + 21 — 5)? 0;T;,0,70B? X

x {Eu + 2(1 — 5)® O5T100,T, [BxByEx + BPE, —

— 1JZ:ZS( s+ o BeByPs) +

+ (1 <~1:)xGM2 57 ( snxgnsi <B" ?31.:" — By Ej;:x ))]}

eByp Bos0a )

(meToZE‘To, = oUs,

(1.6)

*Here 7j corresponds to the quantity Ti6 of [1].

7
The third component of Ohm's law gives an ex-
pression for the transverse induced electric field
o /- . Zs ap
I, =uB,—ulb, + 056G V“B“ — B — 7 _87>~_
Zs B, 3
—2(1 = 8P ool g BePe — g 5 X
(st —m) By® + (s12 — Me') By? 8u BB
x | ERmR B 0 Be — T
i i auu
X (s — M _‘3712-}‘7]2)5}'{"
By {(Snl_nll) szﬁ‘(ﬁ‘ﬂz‘—’flzl)B 2 8uy =
+ =3 M2 3 | B Bz
B,By, Fud
— S (s — My o o ) }}
it =0 /0, k=01, 2, 3). (1.7)

The formulas for the reduced viscosity coeffi-
cients for the ionic component of a partially ion-
ized gas 7' have the form [1,6]

1307 Bnet

o' (2B) = L T T epcgB 0

mH(B) = T Wopeas 8 =

sB {4 4 5)
(E=r e (1.8)

The system (1.2), (1.8), (1.7) is closed by Max-
well's equations

Mo’ |z=1 ~

a8, 3E, 8B, _. %8,
TE=G, = —GEE RGi=—
. 8B oE,
RmG]y = sz' » Pe= oz {Bm = posoalUo) (19)

We note, in conclusion to the above paragraph, that if we have
E, = Ey =0, in (1.6), then for s = 1 the current j, (and iy for Py = 0)
appears as a result of the "slipping” of ions relative to neutrals, which
oceurs for w;Tj, = 1. In this case, we take into account the contri-
bution to the current determined by terms with velocity derivatives.
However, it is not difficult to show, with the aid of estimates (1.4)
and (1.8), that the coefficients ng and sng — n_31, which appear as
factors in front of the viscosity terms in (1.6), are small, Actually,
ga ~ 1 right up to high degrees of ionization (s ~ 0.9}, which is ex-
plained by the predominant influence of the neutral component of the
mixture on the viscosity [6]. We see from (1.3) that in this interval of
variation of degree of jonization the value of ng is sinall, With further
increase of s the quantity &, falls sharply to zero for s = 1, but for
s~ 1 all the parts of Chm's law associated with the ion "slipping "
effect a:e small. An estimate of the coeffficient spg — T!si forz =1,
8= 10" shows that its maximum vaiue for w;rB = 0,75 does not
exceed ~ 5.107* Thus, in the problem under consideration, the for-
mulas (1.6) may be considered as approximately aigebraic, if we ne-
glect the mﬂuence of the velocity differential on the current in Chm's
law.”

*It does not follow from what has been said that it is always
possible to neglect the viscosity term
2( —s)w,1,_ 0,10

ivig e

B2 {sdivan —divay) x B

in Chm's law. .

For example, the coefficient sng — ng for Z = 1, 8 = 10°% turns
out to have a magnitude ™~ s right up to s ~ O 9. S1m11ar1y, the viscous
term is not small if the differences sny — 711 or 51, — 1 enter into
Ohm's law.
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2. Steady flow. In the stationary case (9/8t = 0)
the first two equations of (1.2) can be integrated

= S[(CI—Psz) (224 2y

+ Cz(L-——L)BxBU]%—‘r Cs,

N2 L
1, = i[(cl— P.Rz) (—% — ) B:B, +
0
Fals M, e

where the arbitrary constants C;, Cy, C;, and C,
must be determined for Py # 0 from the boundary
conditions

(kD) =uy(1)=0 (2.2)

and for Couette flow (Pyx = 0) from the conditions

ue () =1, u{—1)=u,(£1)=0. (2.3)
It is not difficult to see that here the electrody-

namic problem becomes separate from the hydro-

dynamic, and one may regard the dependences

By (z) and By(z) as given, Actually, from Max~

well's first equation (1.9) and the boundary con-

dition of continuity of the tangential components

of the electric field strength vector we have

E, = Eo, = const, E,= E,, = const , (2.4)
where Egx and Eyy are the dimensionless compo-
nents of the given external electric field. In ad-~
dition, only velocity derivatives enter into the com-
ponents of Ohm's law (1.6), and expressions for
these are known from (2.1) through B_ and By. Thus,
replacing j, and jy in (1.6) by derivatives of By and
By from Maxwell's second equation (1.9) and the
transverse pressure differential dp/dz by the third
equation of system (1.2), and eliminating the veloc-
ity derivatives, we obtain for By(z) and By (z) a
system of two nonlinear equations of the first order.
Their solution for the appropriate boundary con-
ditions gives the full solution of the problem under
consideration. The system assumes a very simple
form for the case of a fully ionized medium (s = 1)

'ZB;" = RnGEoy = ki = const
s o (Z=1) (2.5)
B — — Ry, (GEOx — ZeTVO Px) = k, = const,
From which
B, = kyz - by, By=lkg-+ by . (2.6)

Here the magnetic field components are linear
over the channel cross section, and, moreover, the
coefficients ky and k; are determined by the constant
currents flowing in the channel. Integrating Max-
well's second equation, we obtain

B (+ 1)— B (—1) = R,GI, =2k,
B,(+1)—B,(—1) = — R, — 26, &7
where I and I are the components of the total cur-
rent on the coodinate axes. From (2.7) it follows
that in order to determine the arbitrary constants
by and by it is sufficient that the magnetic field on
one of the walls be given. For example, consider-
ing the upper plate as an insulator and giving it an
external uniform field described by the formulas

By, = cos o, By, = sing, (2.8)
where ¢ is the angle between the direction of By and
the x axis, we find

by =cosqp — ky, by = sing — k. (2.9)

We set 1y and 7, from formulas (1.3)for s =1in
(2.1), and also By(z) and B, (z) from formulas (2.6);
then integrating and determining the arbitrary con-
stants Cy, Cy, Cs, and C4 with the help of boundary
conditions (2.2) and (2.3), for the velocity com-
ponents of a fully ionized medium we obtain

1) for Couette flow

U (5) =Y, A, (1 + 2 +4, (1 — ) + 4, (1 + 2]
wy (2) =Y, U — 221 (4, + 4,2) (2.10)

2) for flow due to a constant pressure differential

Uy (Z) = 1/2pr (1 - ZZ) (Dl + ‘Dzz _l_ Dszz) (2.11)
uy (2) = YoPR (1 — 2) (Dy + D3z + D)

The dependence of constants Ay and Dy on the
anisotropy parameter for voscosity wiT; is given
by the formulas

Ay = AT {1 - 03213 [a + (Y3 Bo + Ba)] -
4 oyt (o (Y81 + Bs) — T8 (Ye11 + 13)l}
Ay = — Yo @2vFA7 {0 + 02132 [0 (Y3 B1 4 Bs) — T2 (Ya 11 + o)1}
As =15 0272 A1 {o1 -} @;2t;% [91 (s Br + Bs) — 12 (/s 12 + 78)]}
A =021 A7 {72 + 020 [Ya (Y2 B -+ Bs) — B2 (Y3 T2 - 15)]}
As = s 0212A7 {11 — 0132 (Ba¥s ~ Bo11)}
D1 =1 + 01 (e + dg) — Ys0i*1* A7 {02 4 1o® + 04742 -
- g (s Br + Bs) — 200272 (Y3 11 =+ 73) + Vo2 (Va0 + 0s)]}
Dy = 2ao2r% A7 {op + 032732 [da0s + %2 (Y3 B + Bs) — s ate] +-
4+ 05873 [oatts (Y3 By + Bs) - 5 T2 (s — da71) — da¥s (Ys T2 + T15)1}
Dy= — 02t (Y2 114 13) + Vo020t A7 {12 (da+ Ba) + 047132 -
- [—(028s+72®) (/aT1+78) + Batz (Vs 1 + 0lg) - 0¥ (s Br 4 Ba)l}
Ds = — 23 020247 {Ya + 0203 [Baye + e (s + a3) — /s %e71) +
+ 0721% [BaYz (Vs a1 + a3} + Ys oz (Brvs — BsY1) — Tevs (Vs 11+ 18)]}
Ds == 1y 0%7;2n, Dy = —raftin

A =1 ot [(Ysoa + ag) - (Vs B+ Bs)] +

ot [(Ys ag + o) (Ha By + Bs)— (Vs 11+ 1a)2]. (2.12)

Finally, the constants oy, ﬁk and 1y, have the form
oy = 4/s (ka® + 4hg?),

B1 = ¥y (4F12 + E?),
T1 = *#/3 kake, Te == 43 (k1bg + kob1),

atp = 8/p (kb1 + 4ksba), o3 =4y (be2 -+ 4bs?)

Ba =8y (4k1br + keba), Bs = /s (4012 + bo¥)

Yo == 43 biba (2.13)
Assuming wyT; € 1 (absence of viscosity aniso-

tropy), we obtain from (2.10) and (2.11), respective-

ly,
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=Y (142}, uy=0; Uy =1y PR (1 —2%), u, =0,
i.e., the ordinary hydrodynamic modes.

It should also be noted that if, in the case under
consideration, one of the magnetic induction vector
components is equal to zero, then the effect asso-
ciated with transverse motion of the medium does
not occur. Actually, if k;, b; or ky, b, vanish simulta-
neously, then y;=vy,=v;=0, whence Ay=A;=D;=Dy=
=Dy =0 and uy =0. For example, k; =b; = 0, when
Egy = 0 and ¢ = 7/2. However, in this case, taking
into account the viscosity anisotropy radically dis-
torts the hydrodynamic velocity profiles.

3. Nonsteady flow. When formulated exactly, the
nonstationary problem is complicated to investigate.
It does, however, admit of a simple exact solution for
the case of a fully ionized medium. In fact, elimina-
ting the components of current density and electric
field from Ohm's law (1.6) for s =1 with the help of
Maxwell's equations (1.9), we obtain the following
induction equations:

1
x 9By 1 0%y
9t Ry 032 at R, 022 (3.1)

If, for simplicity, we consider that the total cur-
rents through the channel cross section are equal to
zero, then on the basis of (2.7) we may put the
boundary and initial conditions in the form

By (z, 0) = By
By(z,0)=

(1, 1) =By =cos g,

3.2
B, (1, 1) ©-2)

= By, =sing,

from which we have at once that the magnetic field
is identically equal to the homogeneous external
field. From Eqgs, (1.2), assuming s =1, B=1, we
then obtain

R ‘9L — (M1 sin? @ - ng.cos? @) 6642,; -
=+ (M — 12 }sm(pcoscp~—— =P.R
(3.3)
6uy .
+ (s _‘712)3”1(9605@ a P
2 in2 Ouy v
— (M cos* @ 4 Mpsin® @) ¥ = 0,
where
- ! = 3.4
M T T Thgeme s (O

System (3.3) may be solved for arbitrary ¢
using a Laplace transform. However, for ¢ = 0 (mag-~
netic field parallel to the direction of the external
force causing the motion), ¢ = 7/2 (magnetic field
perpendicular to this force), and ¢ = 7/4 the system
has simple solutions. Indeed, for ¢ =0 or ¢ = 7/2
the system (3.3) assumes the form (1.5), but with an
effective Reynolds number R*

R*=R
R*:{ 1* /M
Ry* = Rin,

for ¢ =1/,n

for ¢=0. (3.5)

Thus, the solution of the Couette problem for
boundary conditions (2.3) and a homogeneous initial
condition has the form

Rl

1( 1)
> 7

cos A,z CXp

Uz, 1) = -

(xn=1/2<2n+1)n>. (3.6)

It is clear from (3.6) that a homogeneous mag-
netic field merely delays the formation of the sta-
tionary moede because of the lessening of the vis-
cosity of the medium when the effect of anisotropy
of viscosity is taken into account, and it also follows
from (3.4) and (3.5) that 2 magnetized medium
wjTj >> 1 will have very low viscosity.

Similarly, for flow resulting from a constant
pressure differential P, we have, for homogeneous
initial and boundary conditions,

U (3, £) = ———(1 — 5% — 2P R* Z <_1 08 A2 exp —H?;"Zt
Uv,=0 (3.7)

Here the lessening of the viscosity of the medium
in a strong magnetic field also affects the steady-~
state mode and is accompanied by a general increase
of velocity over the channel cross section for values
of w; iT; Which are not small.

Finally, for ¢ = 77/4 system (3.3) can also be
transformed to the form (1.5) by the substitution

Ue = Yy (v, + vy, uy = Yy (v — ) {3.8)

where (3.3) is rewritten as

Pra_ A Tha_p o (3.9)

ot Mﬁ;’: 022
Thus, in the Couette problem we have

uy (2, ) = Lts 2(

j— 2, —An3
" cos Az (exp R;;:‘L : -+ exp ;:ﬂ)

2
a,(z, 1) = ) D s Anz (exp _ﬁi‘:t—-exp });::z) (3.10)

in the problem with a constant pressure differential

uy (2, t) =

PlRat b R g, szﬁmmX

— hp?
X (RI* exp Rl’}k + Ry¥ exp — jox t)

P (Ri* — Ry*
- (14 2)(1 2)+P E

X(Rl exp R}“*Z — Ry* exp

cos Anz X

R:*i). (3.11)

In conclusion, we note that if conditions exist
such that one may neglect the induced magnetic
field in comparison with the given uniform external
field, then the solutions given for system (3.3) are
valid in the zero-th approximation even for s # 1,
only (1.3) must be used instead of (3.4). We shall
find these conditions, and to do this we turn to the
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equations of the problem in dimensional notation
(1.1). Assuming B = Bj + B*(z, t) (where B; = const
is the external field, and B* is the induction field),
we see from Maxwell's second equation that B* ~
~ Hko@j. To determine the characteristic quantity j
we estimate the relative contributions to the con-
duction current made by the electric and nonelec-
tric forces in Ohm's law.

(1 + Zs) BaoE
Zsw x,Vp

®;G
z0

~(1 + Zs) nf’f;fz =1+ Zs)

__ Zspe*to . pUo?
(Go = g \Vp~—a— , E~E,,

‘_g_o_ Ry
Q==2, G= UoBo). (3.12)

Since we are considering a slow process (p =
= const), it is obvious that the contribution to the
conduction current from the pressure gradient will
be of the same magnitude as the contribution from
the electric force only in very weak electric fields.

For example, for @ = 1 sec™! and w;/Z ~108
sec~! (By = 10°G) we should have G~ 10-8 (for U =
=1 m/sec we have Eg~10% V/m).

For values of E, which are not small the term
¢ Vp in Ohm's law may be neglected regardless of
8 (in the case under consideration the u X B field
does not enter into the equations for the current), In
addition to this, on comparing the j term in Ohm's
law with the slip current B X (j X B), we see that
the latter is 2 (1 — 8)?w; Tj,We Ty times greater than

the former and for s =1 and wiTig = O (1) WeTd/WiTig ~

~ vYmi/me > 1 is the determining factor (in a coplanar
magnetic field the Hall current does not have a com-
ponent in the plane of flow). Thus for an electric field
which is not very weak wiG/ZQ » 1 s #1 and wiTig =
= O (1); from the estimates which have been made we
find

soFo By

1 D ——— ] # e e e,
I~ 50 5oty B ~ su=spomem, Do (3:13)

Hence B* < By, if

RmG
2 (1 — 5P wgTow;Tig

<1. (3.14)

For s =1 the slip current vanishes, and we have

RmG<« 1 instead of (3.14).

If there is no external electric field, and the in-
duced field E*is so small that the current is de-
termined by the pressure gradient, then

. Zs pUg
201 — ) 0Tl ~ 775 3B

Zs
B ~ sa Tz —speman b

(11 = Be*/puoplo?) (3.15)

We note that for the flow geometry under consid-
eration the term Vp X B is determined by the cur-
rent and is eliminated from Ohm's law with the aid
of the equation of motion.

From (3.15) we have B* < B, for s #1 if

Zs 1
201 Zs) A= s oyrgll <1. (3.16)

Moreover, it follows from (3.12) that one must also
require that

miU 02

< (1-+Zs)ea”

(3.17)
Since here in the nonstationary case Ey*and
Ey* ~U,oB* from (3.17) and (3.15) we obtain the
condition supplementary to (3.16), ensuring the
smallness of E* )
8Ti 1
Ty <1 (3.18)
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